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Self-propelled cavity solitons in semiconductor microcavities

A. J. Scroggie,* J. M. McSloy,† and W. J. Firth‡

Department of Physics and Applied Physics, University of Strathclyde, 107 Rottenrow, Glasgow G4 ONG, Scotland
~Received 19 April 2002; published 19 September 2002!

We demonstrate the existence of both bright and dark spontaneously moving spatial solitons in a model of
a semiconductor microcavity. The motion is caused by temperature-induced changes in the cavity detuning and
arises through an instability of the stationary soliton solution above some threshold. An order parameter
equation is derived for the moving solitons and is used to explain their behavior in the presence of externally
imposed parameter modulations. The existence of two-dimensional moving solitons is demonstrated and an
example given of their interaction.
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I. INTRODUCTION

Optical cavities containing nonlinear media provide
the ingredients necessary for the observation of dissipa
structures: losses, external driving, nonlinearity, and spa
coupling. One interesting and common type of solution
spatial solitary waves~cavity solitons!, localized bright, or
dark spots in the plane transverse to the direction of pro
gation of the optical field. Such structures have been p
dicted in a variety of systems and also observed experim
tally. For recent reviews see@1,2#.

When the driving field is a plane wave and the syst
invariant with respect to spatial translations, the soliton c
exist at any location. Motion can be induced by breaking
translational symmetry with the imposition of a spat
modulation on a parameter, such as the pump phase or
plitude @3,4# or the cavity detuning. In this paper we d
scribe, instead, a spontaneous transition from stationar
moving solitons, through a bifurcation of the system. This
made possible by turning one of the parameters~here, the
detuning! into a dynamical variable. The physical motivatio
is the inclusion of thermal effects in our system—a semic
ductor microcavity. Moving solitons have been reported
simulations of an alternative model of the same system@5#,
which includes a very detailed form of semiconductor no
linearity. Our discovery of the same phenomenon in a m
simpler model allows an investigation of the nature of t
solutions and the instability which gives rise to them. W
note that the stationary-to-moving soliton bifurcation h
similarities with the Ising-Bloch transition studied in@6# and
more recently in@7,8#. One notable feature of the prese
system, however, is the existence of a clear physical in
pretation for the motional instability.

In Sec. II we will introduce our system and the mod
used to describe it. Section III will analyze moving solito
in one spatial dimension. The existence and interaction
moving solitons in two dimensions will be demonstrat
briefly in Sec. IV. Finally, Sec. V contains some conclusio
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II. THE MODEL

The system under consideration is a semiconductor
crocavity ~Fig. 1! consisting of an active region sandwiche
between two high reflectivity (;99.9%) distributed Bragg
reflectors~DBR!. The device is driven by an external pum
field EI and, optionally, an external currentJ. WhenJ is less
than some threshold valueJ0 the semiconductor medium ac
as an absorber, while forJ greater thanJ0 it behaves as an
amplifier. If the current is sufficiently large to cause the ga
in the semiconductor to exceed the cavity losses, the sys
will lase.

The intracavity electric fieldE, carrier densityN, and tem-
perature differenceT between the lattice temperature and t
ambient temperature can be described by the following se
partial differential equations@5,9,10#:

]E

]t
52~11 iQ!E1 iJxE1EI1 i¹'

2 E, ~1!

]N

]t
52gN@N1bN22J1~N21!uEu22DN¹'

2 N#, ~2!

]T

]t
52gT~T2ZN2PJ22DT¹'

2 T!, ~3!

where“'
2 is the transverse Laplacian]x

21]y
2 . These equa-

tions apply to both an amplifying~active! device and a pas

FIG. 1. Illustration of an externally driven semiconductor m
crocavity. The central cross-shaded area represents the active r
which is sandwiched between spacers~shown in white!. The striped
regions are the distributed Bragg reflectors and black bars de
electrical contacts.
©2002 The American Physical Society07-1
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sive multiple-quantum well~MQW! device. The strength o
the material nonlinearity is parametrized byJ. The cavity
detuning is denoted byQ where

Q5u2aT, ~4!

with u being the cavity detuning at ambient temperature a
a a coupling parameter@11#. Equation~4! embodies the mos
important consequence of heating in semiconductor mic
cavity devices: namely, a change in the linear refractive
dex of the semiconductor material and hence a shift in
cavity resonances@11,12#.

The normalization of the carrier density has been cho
so that the critical currentJ0 is equal to unity. The termbN2

describes radiative carrier recombination. Carrier and th
mal diffusion coefficients@13# are denoted byDN andDT .

The fieldsE, N, andT decay on time scales oft;10 ps
~the cavity lifetime!, gN

21;1 ns andgT
21;1 ms, respec-

tively. The nonlinear susceptibilityx is assumed to be simpl
a linear function of the carrier density:

x52~D1 i !~N21! ~active device!, ~5!

x5
2~D1 i !~N21!

11D2
~passive MQW device!. ~6!

The parameterD represents the linewidth enhancement fa
tor for an active device and the band-gap detuning fo
passive device. Note that this form of the susceptibility in
passive device implies a detuning-dependent scaling of
electric field:

F}EA11D2, ~7!

whereF is the unscaled electric field.
Finally, the termsZN and PJ2 describe heating due t

nonradiative recombination and Joule heating from the in
tion current, respectively.

Equations~1!–~3! are known to exhibit plane-wave bista
bility and to possess stable, stationary soliton solutions in
absence of thermal effects (a50) @4#. Below we describe
new structures whose existence is due entirely to the effec
temperature changes on the cavity and thereby on the in
cavity field.

III. ONE-DIMENSIONAL MOVING CAVITY SOLITONS

A. Active configuration

Modulation of parameters such as the pump field or ca
detuning is generally expected to induce movement in ca
solitons@3,4#. The movement arises from a nonzero proje
tion of the parameter modulation onto the neutral mode
the unperturbed system. This neutral mode correspond
the generator of translations and therefore driving it produ
a change in the position of the soliton@4#. In the present
model, the detuning is not a parameter but, through the t
perature, a dynamical variable, capable of spontaneous
tial variation. This creates the right circumstances for
existence of spontaneously moving solitons.
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Equations~1!–~3! were integrated numerically in one sp
tial dimension on a grid of anywhere between 256 and 10
points using a split-step method@14#. Figure 2 shows an
example of a moving soliton. The movement can be thou
of as arising from an instability of the stationary solito
which, for an amplifier, has a temperature minimum at
center. When the peak of the optical intensity is displac
from the temperature minimum, it lowers the temperature
its new location, but also moves in the detuning gradient
which it finds itself. If the movement is slow enough for th
temperature to respond, the soliton just establishes itself
new location. If, however, the effect of the gradient„con-
trolled by the parametera @Eq. ~4!#… is large enough, the
intensity peak will keep moving, cooling the material
meets while the temperature relaxes to the ambient level
hind it, in a process which sustains the detuning gradie
and therefore the motion. From the symmetry of the pro
lem, there are clearly two such moving solutions, one in e
direction in space. This argument clearly requires that
temperature gradient is such as to make the soliton m
away from, not towards, its original position.

Figure 3 shows stationary and moving soliton branches
a function of the pump amplitudeEI , for several different
values ofa, the coupling strength between optical field a
temperature. The stationary solutions, even though unsta
can be computed to arbitrary precision using a relaxat
method@15#. While the two solution branches are disjoint fo
large values ofa, their merging asa decreases is eviden
and suggests that the moving solutions emerge from a~su-
percritical! bifurcation of the stationary solitons. In fact, a
implied above,a is the most natural parameter to use wh
describing this bifurcation. The appearance of the mov
solution is most easily analyzed by studying the stability
the stationary solution via the eigenvalues of the Jacob
These eigenvalues and the corresponding eigenvectors
be calculated numerically, again to high accuracy@15#.

Figure 4 plots the nonzero eigenvalue with largest r
part ~corresponding to the motional instability! as a function
of a, for a fixed pump value ofEI50.770. The instability
occurs ata.0.039, when the eigenvalue becomes positi
Figure 5 shows an example of an unstable eigenfunction

FIG. 2. ~a! Space-time plot of the real part of the electric fie
for a moving soliton.~b! Electric field and temperature componen
of a moving soliton.EI50.350, a53.0, DN50.052, DT51, gN

51022, gT51025, D55, u522, J50.9, J52, b50, Z
50.172, P51.231024.
7-2
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SELF-PROPELLED CAVITY SOLITONS IN . . . PHYSICAL REVIEW E66, 036607 ~2002!
well as the null eigenfunction which arises from the trans
tional invariance of the system and which is proportional
the spatial derivative of the fields. The temperature com
nents of the eigenfunctions are clearly different while t
components corresponding to the real part of the elec
field are very similar~as are those for the imaginary part
the field and for the carrier density!. This reflects the fact tha
the instability alters the temperature profile and drives
motion of the optical field and carrier density. Figure
shows a space-time plot of a stationary soliton becom
unstable to a moving soliton.

From similar stationary-to-moving bifurcations@6,7#, or
simply from continuity, the velocity of the moving solutio
should go to zero as the bifurcation point is approached fr

FIG. 3. Stationary~dashed and dotted lines! and moving~solid
lines! soliton solution branches as functions of the external pu
amplitude. The curves correspond to values ofa of ~from left to
right! 3.0, 2.0, 1.0, 0.5, and 0. All other parameters are as in Fig
Each solution on the dotted stationary branch is unstable to
corresponding solution on the dashed branch, as well as to the m
ing solution. The quantityE0 in the vertical axis label denotes th
background solution on which the soliton sits.

FIG. 4. The eigenvaluel which leads to the motional instability
as a function ofa.The imaginary part ofl is always zero.EI

50.770, all other parameters as in Fig. 2.
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above~Fig. 7! and the stationary and moving solutions coi
cide. At the bifurcation point the unstable eigenfunction
then identical to the null eigenfunction. This degeneracy
important consequences for the behavior of the moving s
tons in the presence of externally imposed perturbations
we will see in Sec. III C.

Since the moving solutions depend upon a balance
tween the relaxation rate of the temperature and the resp
of the optical field to a detuning gradient, increasing t
value of the thermal time constantgT should increase the
value ofa at which the instability appears. Figure 8 confirm
this, showing that an increase ingT from 1025 to 1024 re-
quires an increase ina of roughly an order of magnitude
before the moving solitons appear. This is relevant for
periments, given the uncertainty in the values of this and
other thermal parameters@12#.

B. Passive configuration

The instability to moving solutions described in the pr
ceding section can also be observed for dark solitons in
passive system. This is consistent with the mechanism

p

2.
e
v-

FIG. 5. The electric field and temperature components of
unstable mode~solid line! and the neutral mode~dashed line! of the
stationary soliton solution. In panel~a! the two functions effectively
coincide. All parameters as in Fig. 2; in particular,a53.0 andEI

50.35.

FIG. 6. Space-time plot of the destabilization of a stationa
soliton to a moving soliton. All parameters as in Fig. 2.
7-3
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A. J. SCROGGIE, J. M. McSLOY, AND W. J. FIRTH PHYSICAL REVIEW E66, 036607 ~2002!
scribed above, since a passive medium is cooled by a
soliton, just as an active one is by a bright soliton.

As intensity minima sitting on a high-intensity bac
ground, dark solitons are expected to exist on the up
branch of the plane-wave bistability curve. Figure 9 sho
an example of a dark soliton branch along with plane-wa
and roll solutions. The roll solution has a wave vectorK
.1.3Kc whereKc is the most unstable wave vector at t
modulational instability threshold. In contrast with Fig. 3, t
homogeneous background field has not been subtracted
the soliton field, in order to show the underlying plane-wa

FIG. 7. The velocity of a moving soliton as a function ofa. All
parameters as in Fig. 4. The diamonds indicate results from num
cal simulations. The solid line comes from weakly nonlinear ana
sis ~see Sec. III C!.

FIG. 8. The eigenvaluel which leads to the motional instability
as a function ofa and for gT51024. All other parameters as in
Fig. 4.
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ebistability. For these parameters, dark solitons exist
5.542,EI,5.560 but are always unstable to spontaneo
motion. An example of a moving dark soliton is given in Fi
10. As in the active case the translational modes of the e
tric field and carrier density are driven by the temperat
gradient.

Moving solitons, whether in the active or passive syste
rely on a local increase in the cavity detuning which, f

ri-
-

FIG. 9. ~a! Solution branches for~i! rolls with K.1.3Kc and~ii !
stationary dark solitons. Panels~b! and~c! correspond, respectively
to points on branches~i! and ~ii !. Solid and dashed lines, respe
tively, denoteuEu andT. The homogeneous solution~iii ! is stable on
solid parts of the curve and modulationally unstable in the das
region. Parameters area51, DN50.2, DT51, gN51022, gT

51025, D510, u50.3, J580, b51.6, Z50.172. ~b! EI55.45
and ~c! EI55.55.

FIG. 10. ~a! Magnitude of electric field~solid line! and tempera-
ture ~dotted line! for a dark moving soliton.~b! Space-time plot of
a moving soliton. Parameters areEI55.39 anda51. All other
parameters as in Fig. 9.
7-4
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SELF-PROPELLED CAVITY SOLITONS IN . . . PHYSICAL REVIEW E66, 036607 ~2002!
positive a, is caused by a local cooling of the medium.
instead, we consider a system in whicha is negative, such an
effect will be produced by locally heating the medium.
that case, dark and bright moving solitons should exist
active and passive systems, respectively, in contrast with
semiconductor cavity considered here.

C. Soliton equation of motion

We can perform a weakly nonlinear analysis near the
furcation point between the stationary and moving solutio
The calculation has similarities to that reported in@8#.

We first define

V5@E,E* ,N,T#T5V01W, ~8!

whereV05@E0 ,E0* ,N0 ,T0#T is the stationary soliton solu
tion. In addition, we change co-ordinates tot and j5x
2vt, wherev is the~unknown! soliton velocity, to obtain an
equation of the following form forW:

] tW5LW1N~W!1v~]jW1]jV0!. ~9!

The operatorL is a linear operator, whose form at the bifu
cation point is denoted byL0, while N is nonlinear. Before
proceeding we note that, since the mode giving rise to
instability coincides withf0, the null eigenvector ofL0, the
eigenvectors ofL0 do not form a basis for the space. The s
can be completed byc0, the null eigenvector ofL 0

† , which
is orthogonal toall eigenvectors ofL0. In addition, there
exists a generalized eigenvector@16# fc , which will be im-
portant in the following analysis and which satisfies t
equation

Lfc52f0 . ~10!

We now introduce a smallness parameter« and expand all
relevant quantities in appropriate powers of«:

W5«W11«2W21«3W31•••,

L5L01«2L2 ,

] t5«2]t ,

v5«m. ~11!

Collecting terms order by order in« we find atO(«)

L0W152mf0 , ~12!

whose solution, from Eq.~10!, is

W15mfc . ~13!

The quantitym appears as an unknown multiplier of th
unstable eigenvectorfc and we expect the subsequent ana
sis to yield equations governing its dynamics. In other wor
m ~or the velocity! is the order parameter of the system.

At O(«2)

L0W252N2~W!2m2]jfc[S2 , ~14!
03660
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whereN2(W) denotes the nonlinear terms of second orde
«. BecauseL0 is singular,S2 must be orthogonal toc0 for a
solution to exist. Sincec0 is an odd function ofj, while all
terms inS2 are even, the inner product (c0 ,S2) is automati-
cally zero and at least one solution exists forW2.

At O(«3)

L0W35]tW12L2W12N3~W!2m]jW2

5~]tm!fc2mL2fc2m3n3~W!2m3]jw2

[S3 , ~15!

whereN3(W) denotes the nonlinear terms of third order in«
and

N3~W![m3n3~W!,

W2[m2w2 ; ~16!

that is, the order parameterm has been factored out ofN3
andW2. Again, (c0 ,S3) must be zero for a solution to exis
which implies~undoing the scalings!

] tv5
~c0 ,@L2L0#fc!

~c0 ,fc!
v1F ~c0 ,n3!

~c0 ,fc!
1

~c0 ,]jw2!

~c0 ,fc!
Gv3.

~17!

By solving Eqs.~12! and ~14! numerically, the linear and
cubic coefficients in Eq.~17! can be evaluated and th
steady-state velocity of the soliton calculated. An example
shown in Fig. 7 along with results from numerical simul
tions of Eqs.~1!–~3!. The agreement is quite good, eve
more than three times above threshold.

If a perturbationP is added to Eq.~9!, small enough to be
consideredO(«3), then Eq.~17! is modified to

] tv5
~c0 ,@L2L0#fc!

~c0 ,fc!
v1F ~c0 ,n3!

~c0 ,fc!
1

~c0 ,]jw2!

~c0 ,fc!
Gv3

1
~c0 ,P!

~c0 ,fc!
. ~18!

Note that, since the order parameter of the system is
soliton velocity, the usual order parameter equations~17! and
~18! involve the derivative of the velocity with respect t
time, or equivalently, the second derivative with respect
time of the soliton position. There is a superficial rese
blance to a Newtonian force law obeyed by a massive p
ticle. Figure 11 shows some snapshots of a moving sol
oscillating in a ‘‘potential’’ created by adding a small, Gaus
ian amplitude modulation to the pump:

EI5EI0@11A exp~2x2/w2!#, ~19!

whereA5O(«3). The periodic motion is in complete con
trast with the effect the same perturbation would have o
normally stationary soliton. The equation of motion of th
latter in an external perturbation is expected to be first or
in time and its behavior a function only of its position@3,4#:
it would simply follow the amplitude gradient to a local ex
7-5
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FIG. 11. Dynamical evolution
of a dark cavity soliton oscillating
in an amplitude-modulated exter
nal pump at ~a! t52.0, ~b! t
52.7, ~c! t53.0, and~d! t53.7
thermal relaxation times. The
solid line showsuEu, the modulus
of the electric field, while the dot-
ted line is the temperatureT.
EI55.55, a51, A50.02, andw
57.8. All other parameters as in
Fig. 9.
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tremum and remain there. An external perturbation drives
velocity of an otherwise stable stationary soliton, while
drives the acceleration of a spontaneously moving solito

D. The role of carrier dynamics

In what has been discussed before, we have propos
mechanism for spontaneous soliton motion which relies
the interplay between the optical field and the lattice te
perature. It is natural to ask what role, if any, is played by
carrier dynamics.

The issue can be addressed by ‘‘adiabatically’’ eliminat
the carrier density from Eqs.~1!–~3!. This is done in a non-
rigorous way by setting] tN50 ~and DN“'

2 N50) and is
intended to represent, loosely, the limitgN→`. For simplic-
ity we neglect radiative recombination of the carriersb
50) and therefore set

N5
J1uEu2

11uEu2
~20!

to obtain~for an active system!

]E

]t
52~11 iQ!E2J

~12 iD!~12J!

11uEu2
E1EI1 i¹'

2 E,

~21!
03660
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]T

]t
52gTFT2Z

~J1uEu2!

~11uEu2!
2PJ22DT¹'

2 TG . ~22!

As with Eqs.~1!–~3!, stationary solutions of the above tw
equations can be calculated, along with their stability pro
erties, and the equations can be integrated in time. By th
means, stationary-to-moving transitions have also been id
tified in Eqs.~21! and~22!, as Fig. 12 illustrates. From simu
lations, the elimination of the carrier dynamics has the eff

FIG. 12. The velocity of a moving soliton as a function ofa. All
parameters as in Fig. 4.
7-6
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SELF-PROPELLED CAVITY SOLITONS IN . . . PHYSICAL REVIEW E66, 036607 ~2002!
of increasing the speed of solitons on a given detuning g
dient. Since the soliton cannot respond on a time scale fa
than min(gN

21 ,1), when the relaxation rate ofN becomes very
large~in this case infinite!, the soliton motion is limited only
by the cavity lifetime. For this reason the value ofa at the
bifurcation point is much smaller in Fig. 12 than in Fig.
~the solitons are much more sensitive to temperature gr
ents!.

The analysis of Eqs.~21! and ~22! supports our assertio
that the motional instability is due essentially to the inter
tion between the optical and thermal fields. In addition, E
~21! and ~22! provide a simpler model with which to exam
ine the moving solitons than Eqs.~1!–~3!. Variations on such
reduced, two-equation models are therefore the focus of
rent work.

IV. TWO-DIMENSIONAL MOVING CAVITY SOLITONS

We have verified the existence of moving solitons in tw
spatial dimensions, as Fig. 13 shows. The existence o
continuum of moving solitons, one for each direction
space, allows complicated and interesting interactions, s
as soliton-soliton scattering. In Fig. 13 two solitons with
small transverse displacement approach each other~a! and,
when they are close enough, the diffraction ripples arou
each soliton exert forces which cause them to rotate aro
their midpoint~b!. As the temperature profile changes in r
sponse to the orbiting solitons, their orbital speed slows
reverses~c!. Finally the force exerted by the temperatu
gradient forces the solitons apart once more but in directi
different from those of their initial velocities~d!.

A more detailed study of the interactions between mov
solitons will be reported elsewhere.

V. CONCLUSIONS

We have demonstrated the existence, in both one and
spatial dimensions, of spontaneously moving cavity solito
in a model of a semiconductor microcavity. These solito
appear through an instability of the stationary solitons aris
from localized temperature changes in the semiconduc
The existence of this straightforward physical interpretat
of the motional instability is a particularly appealing featu
of the model. Regardless of the details of the present sys
h,

.

ic
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however, the essential ingredients appear to be the exist
of stationary soliton solutions and the spontaneous crea
of ‘‘parameter’’ gradients. We therefore expect moving so
tons to be present in a wide range of optical and other s
tems.
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FIG. 13. Dynamical evolution of two-dimensional collidin
dark cavity solitons with arrows indicating directions of motio
Snapshots of the modulus of the electric field at~a! t50.15, ~b! t
51.0, ~c! t52.0, and~d! t52.75 thermal relaxation times. Param
eters areEI55.55 anda51. All other parameters as in Fig. 9.
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