PHYSICAL REVIEW E 66, 036607 (2002

Self-propelled cavity solitons in semiconductor microcavities
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We demonstrate the existence of both bright and dark spontaneously moving spatial solitons in a model of
a semiconductor microcavity. The motion is caused by temperature-induced changes in the cavity detuning and
arises through an instability of the stationary soliton solution above some threshold. An order parameter
equation is derived for the moving solitons and is used to explain their behavior in the presence of externally
imposed parameter modulations. The existence of two-dimensional moving solitons is demonstrated and an
example given of their interaction.
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I. INTRODUCTION Il. THE MODEL

The system under consideration is a semiconductor mi-

Optical cavities containing nonlinear media provide a”crocavity(Fig. 1) consisting of an active region sandwiched

the ingredients necessary for .the obser\_/at|or_1 of d|SS|pat|y etween two high reflectivity 99.9%) distributed Bragg
structures: losses, external driving, nonlinearity, and spati

X ) X >FatYeflectors(DBR). The device is driven by an external pump
coupling. One interesting and common type of solution isjg|q £, and, optionally, an external currefitWhend is less
spatial solitary wavegcavity solitons, localized bright, or  {han some threshold valug the semiconductor medium acts
dark spots in the plane transverse to the direction of propass an absorber, while fat greater thard,, it behaves as an
gation of the optical field. Such structures have been preampiifier. If the current is sufficiently large to cause the gain
dicted in a variety of systems and also observed experimenn the semiconductor to exceed the cavity losses, the system
tally. For recent reviews sdé,2]. will lase.

When the driving field is a plane wave and the system The intracavity electric field, carrier densityN, and tem-
invariant with respect to spatial translations, the soliton carperature differenc& between the lattice temperature and the
exist at any location. Motion can be induced by breaking theambient temperature can be described by the following set of
translational symmetry with the imposition of a spatial partial differential equationg5,9,10:
modulation on a parameter, such as the pump phase or am- I
plitude [3,4] or the cavity detuning. In this paper we de- oe . = -
scribe, instead, a spontaneous transition from stationary to at (1+IO)E+IEXE+E+IVLE, @
moving solitons, through a bifurcation of the system. This is
made possible by turning one of the parametéere, the oN 2
detuning into a dynamical variable. The physical motivation ot MIN+BN=J+(N-1)[E[*~D\VIN], (2)
is the inclusion of thermal effects in our system—a semicon-
ductor microcavity. Moving solitons have been reported in aT ) 5
simulations of an alternative model of the same systgm e yr(T=ZN=PJ=D;VIT), 3)
which includes a very detailed form of semiconductor non-
linearity. Our discovery of the same phenomenon in a muclwherevf is the transverse Laplacia?er ‘93' These equa-
simpler model allows an investigation of the nature of thetions apply to both an amplifyingactive device and a pas-
solutions and the instability which gives rise to them. We
note that the stationary-to-moving soliton bifurcation has E, Eq
similarities with the Ising-Bloch transition studied [ii] and l T
more recently in[7,8]. One notable feature of the present
system, however, is the existence of a clear physical inter-
pretation for the motional instability.

In Sec. Il we will introduce our system and the model
used to describe it. Section Il will analyze moving solitons
in one spatial dimension. The existence and interaction of
moving solitons in two dimensions will be demonstrated
briefly in Sec. IV. Finally, Sec. V contains some conclusions.

FIG. 1. lllustration of an externally driven semiconductor mi-
crocavity. The central cross-shaded area represents the active region

*Electronic address: andrew@phys.strath.ac.uk which is sandwiched between spacgsisown in white. The striped
"Electronic address: jmc@phys.strath.ac.uk regions are the distributed Bragg reflectors and black bars denote
*Electronic address: willie@phys.strath.ac.uk electrical contacts.
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sive multiple-quantum welfMQW) device. The strength of 0.340

the material nonlinearity is parametrized By. The cavity
detuning is denoted b§) where

=0—aT, @ _°
&
with 6 being the cavity detuning at ambient temperature and
a a coupling parametéfl]. Equation(4) embodies the most
important consequence of heating in semiconductor micro-
cavity devices: namely, a change in the linear refractive in- , g ,
dex of the semiconductor material and hence a shift in the -2 -10 o0 10 20 -10-5 0 5 10
cavity resonancefl1,17. X X
The normalization of the carrier density has been chosen FiG. 2. (a) Space-time plot of the real part of the electric field
so that the critical curreni, is equal to unity. The tern@N? for a moving soliton(b) Electric field and temperature components
describes radiative carrier recombination. Carrier and theref a moving soliton.E;=0.350, a=3.0, Dy=0.052, Dt=1, yy
mal diffusion coefficient§13] are denoted by andD+. =102, yr=10% A=5, 9=—2, E=0.9, J=2, =0, Z
The fieldsE, N, andT decay on time scales af~10 ps  =0.172,P=1.2x10 “.
(the cavity lifetime, yy*~1 ns andy;'~1 us, respec-
tively. The nonlinear susceptibility is assumed to be simply Equationg1)—(3) were integrated numerically in one spa-
a linear function of the carrier density: tial dimension on a grid of anywhere between 256 and 1024
points using a split-step methdd4]. Figure 2 shows an

4

0.320

0.310

x=—(A+D)(N=1) (active devicg, ®) example of a moving soliton. The movement can be thought
_ of as arising from an instability of the stationary soliton
_ —(A+i)(N-1) 6) which, for an amplifier, has a temperature minimum at its

X (passive MQW device

center. When the peak of the optical intensity is displaced
from the temperature minimum, it lowers the temperature at
The parameteA represents the linewidth enhancement fac-its new location, but also moves in the detuning gradient on
tor for an active device and the band-gap detuning for avhich it finds itself. If the movement is slow enough for the
passive device. Note that this form of the susceptibility in thetemperature to respond, the soliton just establishes itself at a
passive device implies a detuning-dependent scaling of theew location. If, however, the effect of the gradigebn-

1+A?

electric field: trolled by the parametex [Eq. (4)]) is large enough, the
intensity peak will keep moving, cooling the material it
FoEJ1+A?, (7) meets while the temperature relaxes to the ambient level be-
hind it, in a process which sustains the detuning gradient,
whereF is the unscaled electric field. and therefore the motion. From the symmetry of the prob-

Finally, the termsZN and PJ* describe heating due to |em, there are clearly two such moving solutions, one in each
nonradiative recombination and Joule heating from the injecdirection in space. This argument clearly requires that the
tion current, respectively. temperature gradient is such as to make the soliton move

Equations(1)—(3) are known to exhibit plane-wave bista- away from, not towards, its original position.
bility and to possess stable, stationary soliton solutions in the  Figure 3 shows stationary and moving soliton branches as
absence of thermal effectst&0) [4]. Below we describe a function of the pump amplitudg, , for several different
new structures whose existence is due entirely to the effect afalues of, the coupling strength between optical field and
temperature changes on the cavity and thereby on the intrgemperature. The stationary solutions, even though unstable,

cavity field. can be computed to arbitrary precision using a relaxation
method[15]. While the two solution branches are disjoint for
I1l. ONE-DIMENSIONAL MOVING CAVITY SOLITONS large values ofa, their merging ase decreases is evident

and suggests that the moving solutions emerge frofsua
percritica) bifurcation of the stationary solitons. In fact, as
Modulation of parameters such as the pump field or cavitymplied above« is the most natural parameter to use when
detuning is generally expected to induce movement in cavitglescribing this bifurcation. The appearance of the moving
solitons[3,4]. The movement arises from a nonzero projec-solution is most easily analyzed by studying the stability of
tion of the parameter modulation onto the neutral mode ofhe stationary solution via the eigenvalues of the Jacobian.
the unperturbed system. This neutral mode corresponds fbhese eigenvalues and the corresponding eigenvectors can
the generator of translations and therefore driving it producebe calculated numerically, again to high accurfty].
a change in the position of the solitdd]. In the present Figure 4 plots the nonzero eigenvalue with largest real
model, the detuning is not a parameter but, through the tenpart(corresponding to the motional instabilitgs a function
perature, a dynamical variable, capable of spontaneous spaf «, for a fixed pump value oE;=0.770. The instability
tial variation. This creates the right circumstances for theoccurs ata=0.039, when the eigenvalue becomes positive.
existence of spontaneously moving solitons. Figure 5 shows an example of an unstable eigenfunction, as

A. Active configuration
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Okuu . , \ , , FIG. 5. The electric field and temperature components of the
0.30 0.40 0.50 0.60 0.70 0.80 unstable mod¢solid ling) and the neutral mod@ashed lingof the
E, stationary soliton solution. In pan@) the two functions effectively
coincide. All parameters as in Fig. 2; in particular= 3.0 andE,

FIG. 3. Stationarydashed and dotted lineand moving(solid =0.35.
lines) soliton solution branches as functions of the external pump

amplitude. The curves correspond to valuesxobf (from left to . . . . .

. .. .above(Fig. 7) and the stationary and moving solutions coin-

right) 3.0, 2.0, 1.0, 0.5, and 0. All other parameters are as in Fig. 2, ide. At the bif fi int th tabl B f i .

Each solution on the dotted stationary branch is unstable to th Ide. id .e Ilur(;]a Ion”pqm f € u.ns an? eégen unc IOnhIS

corresponding solution on the dashed branch, as well as to the mo nen identical to the null eigen unctlon.. IS egener'acy a,s
Important consequences for the behavior of the moving soli-

ing solution. The quantity, in the vertical axis label denotes the ) A )
background solution on which the soliton sits. tons in the presence of externally imposed perturbations, as
we will see in Sec. Il C.

. . . . Since the moving solutions depend upon a balance be-
well as the null eigenfunction which arises from the transla-, .
tween the relaxation rate of the temperature and the response

tional invariance of the system and which is proportional toOf the optical field to a detuning gradient, increasing the

the spatial derivative of the fields. The temperature COMPOC_ " of the thermal time constant, should increase the

nents of the eigenfunctions are clearly different while the alue of at which the instability appears. Figure 8 confirms
mponen rr ndin he real part of the electric, . . . : '
components corresponding to the real part of the elect is, showing that an increase i from 10 ° to 10 * re-

field are very similaias are those for the imaginary part of ™ ™ . i of hl d f itud
the field and for the carrier densjtyT his reflects the fact that quires an increase Ia ot roughly an order of magnitude
E'pefore the moving solitons appear. This is relevant for ex-

the instability alters the temperature profile and drives th ) : A .
motion of the optical field and carrier density. Figure g Periments, given the uncertainty in the values of this and the
gother thermal parametef&2].

shows a space-time plot of a stationary soliton becomin
unstable to a moving soliton.

From similar stationary-to-moving bifurcatiori§,7], or
simply from continuity, the velocity of the moving solution  The instability to moving solutions described in the pre-
should go to zero as the bifurcation point is approached frongeding section can also be observed for dark solitons in the

passive system. This is consistent with the mechanism de-

B. Passive configuration
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FIG. 4. The eigenvalug which leads to the motional instability

as a function ofa.The imaginary part o\ is always zero.E,
=0.770, all other parameters as in Fig. 2.

FIG. 6. Space-time plot of the destabilization of a stationary
soliton to a moving soliton. All parameters as in Fig. 2.
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FIG. 7. The velocity of a moving soliton as a functionef All
parameters as in Fig. 4. The diamonds indicate results from numeri
cal simulations. The solid line comes from weakly nonlinear analy-

sis (see Sec. Il ¢
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scribed above, since a passive medium is cooled by a darl x x

soliton, just as an active one is by a bright soliton.

As intensity minima sitting on a high-intensity back-
ground, dark solitons are expected to exist on the uppe?
branch of the plane-wave bistability curve. Figure 9 show
an example of a dark soliton branch along with plane-wave
and roll solutions. The roll solution has a wave veckor

FIG. 9. (a) Solution branches fd(i) rolls with K=1.3K. and(ii)
tationary dark solitons. Pandl® and(c) correspond, respectively,
to points on branche6) and (ii). Solid and dashed lines, respec-
Siively, denotg E| andT. The homogeneous solutidiii ) is stable on
Solid parts of the curve and modulationally unstable in the dashed
region. Parameters are=1, Dy=0.2, D;=1, yy=10"2, ;

=1.3K,. whereK, is the most unstable wave vector at the —1075, A=10, §=0.3, E=80, 8=1.6, Z=0.172. (b) E,=5.45
modulational instability threshold. In contrast with Fig. 3, the and (c) E,=5.55.

homogeneous background field has not been subtracted from

the soliton field, in order to show the underlying plane-wavebistability. For these parameters, dark solitons exist for

1x1074

5x10°5[ ]

Re(7)

-5x10°°

Ax10 4 W I I o o Leord

0.10 020 030 040 050 060 0.70
o

5.542<E,;<5.560 but are always unstable to spontaneous
motion. An example of a moving dark soliton is given in Fig.
10. As in the active case the translational modes of the elec-
tric field and carrier density are driven by the temperature
gradient.

Moving solitons, whether in the active or passive system,
rely on a local increase in the cavity detuning which, for

5 T Y i 0.150 10 ]

@ ®)
8 \
{0.145 . \

4\
10.140

1 , \ : 0.135 0 [E—

FIG. 10. (a) Magnitude of electric fieldsolid line) and tempera-

FIG. 8. The eigenvalur which leads to the motional instability ture (dotted ling for a dark moving soliton(b) Space-time plot of
as a function ofa and for yr=10*. All other parameters as in a moving soliton. Parameters aBg=5.39 anda=1. All other

Fig. 4.

parameters as in Fig. 9.
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positive a, is caused by a local cooling of the medium. If,
instead, we consider a system in whiehs negative, such an
effect will be produced by locally heating the medium. In

PHYSICAL REVIEW B6, 036607 (2002

whereN,(W) denotes the nonlinear terms of second order in
e. Becausel, is singular,S, must be orthogonal tgs, for a
solution to exist. Sincely, is an odd function o, while all

that case, dark and bright moving solitons should exist inerms inS, are even, the inner produci/,S,) is automati-
active and passive systems, respectively, in contrast with theally zero and at least one solution exists V.

semiconductor cavity considered here.

C. Soliton equation of motion

We can perform a weakly nonlinear analysis near the bi-

At O(&%)
LoW3=3d,W;—L;W3—Nz(W)—ud W,

= (9,) pe— uLode— u3nz(W)— ,U«3f9§W2

furcation point between the stationary and moving solutions.

The calculation has similarities to that reported &.
We first define

V=[E,E*,N,T]"=V,+W, (8)
whereVy=[Ey,E} ,No,To]" is the stationary soliton solu-
tion. In addition, we change co-ordinates toand £=x
—uvt, wherev is the(unknown) soliton velocity, to obtain an
equation of the following form folV:

9

The operatotZ is a linear operator, whose form at the bifur-
cation point is denoted by¥,, while N is nonlinear. Before

proceeding we note that, since the mode giving rise to the

instability coincides withgy, the null eigenvector of, the
eigenvectors ofZ, do not form a basis for the space. The set
can be completed by, the null eigenvector ot‘g, which
is orthogonal toall eigenvectors ofZ,. In addition, there
exists a generalized eigenvecf{d®6] ¢., which will be im-
portant in the following analysis and which satisfies the
equation

L=~ . (10)

We now introduce a smallness parameteand expand all
relevant quantities in appropriate powerseof

W=gW;+e?W,+e3Ws+- - -,
L=Lo+e%L,,
h=g%d.,

v=gpM. (11)
Collecting terms order by order i we find atO(¢)
LoW1=— e,
whose solution, from Eq(10), is
Wi=pude.

The quantityu appears as an unknown multiplier of the
unstable eigenvectap, and we expect the subsequent analy-
sis to yield equations governing its dynamics. In other words
w (or the velocity is the order parameter of the system.

At O(e?)

12

13

LoW,y=—No(W) — 29 p=S,, (14

=S5, (15

whereN3;(W) denotes the nonlinear terms of third ordekin
and

Na(W)=u3ng(W),
Wo= 2wy ; (16)

that is, the order parameter has been factored out di;
andW,. Again, (¥,,S;) must be zero for a solution to exist,
which implies(undoing the scalings

_ (o [ L= Lol ) (p,n3)
('//Oad’c) (¢01¢C)

(P0,9:W2) |

(o o) |
(17)

tU v

By solving Egs.(12) and (14) numerically, the linear and
cubic coefficients in Eq(17) can be evaluated and the
steady-state velocity of the soliton calculated. An example is
shown in Fig. 7 along with results from numerical simula-
tions of Egs.(1)—(3). The agreement is quite good, even
more than three times above threshold.

If a perturbationll is added to Eq(9), small enough to be
consideredd(e3), then Eq.(17) is modified to

U:(ll’o-[ﬁ_ﬁo](ﬁc)v (o.n3)  (ho,d:Wp) )3
‘ (Yo, bc) (Yo.9c) (Yo, c)
(3o, 10)
b 1

Note that, since the order parameter of the system is the
soliton velocity, the usual order parameter equatid@s and
(18) involve the derivative of the velocity with respect to
time, or equivalently, the second derivative with respect to
time of the soliton position. There is a superficial resem-
blance to a Newtonian force law obeyed by a massive par-
ticle. Figure 11 shows some snapshots of a moving soliton
oscillating in a “potential” created by adding a small, Gauss-
ian amplitude modulation to the pump:
E/=E,o[1+Aexp —x3/w?)], (19
whereA=0(e?). The periodic motion is in complete con-
trast with the effect the same perturbation would have on a
normally stationary soliton. The equation of motion of the
latter in an external perturbation is expected to be first order
in time and its behavior a function only of its positifB,4]:
it would simply follow the amplitude gradient to a local ex-
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FIG. 11. Dynamical evolution
of a dark cavity soliton oscillating
in an amplitude-modulated exter-
nal pump at(a) t=2.0, (b) t

-40 -20 20 40 -40 -20 0 20 40 =27, (c) t=3.0, and(d) t=3.7
x thermal relaxation times. The
s[ T —T———0.155 5 T T T 0.156 solid line showgE|, the modulus
1 of the electric field, while the dot-
ted line is the temperaturd.
Ao.150 0.150 E,=5.55, a=1, A=0.02, andw
=7.8. All other parameters as in
Fig. 9.
uw 0.145- W 0.145+
0.140 0.140
I: L 1 1 2 1 A 1 1 2 ]
—40 -20 20 40 —40 -20 o 20 40
x
tremum and remain there. An external perturbation drives the aT (J+|E2)
velocity of an otherwise stable stationary soliton, while it | T2 — -PX-D{ViT|. (22
drives the acceleration of a spontaneously moving soliton. (1+]E[%)

D. The role of carrier dynamics

In what has been discussed before, we have proposed
mechanism for spontaneous soliton motion which relies o
the interplay between the optical field and the lattice tem-

perature. It is natural to ask what role, if any, is played by theIat|ons, the elimination of the carrier dynamics has the effect

carrier dynamics.

As with Egs.(1)—(3), stationary solutions of the above two
equations can be calculated, along with their stability prop-

eéties, and the equations can be integrated in time. By these
eans, stationary-to-moving transitions have also been iden-
tified in Egs.(21) and(22), as Fig. 12 illustrates. From simu-

The issue can be addressed by “adiabatically” eliminating _ o
the carrier density from Eq$1)—(3). This is done in a non- 5 o
rigorous way by settingyN=0 (and DyV>N=0) and is A1t ° ]
intended to represent, loosely, the liny§— <. For simplic- g i °
ity we neglect radiative recombination of the carriefd ( 8 3.0x10°5F ° 3
=0) and therefore set 2 E

] : °

J+|E[? 3 20010 ]

= > (20 > 3

1+|E]| 8 g

E o

3 10105 ]

to obtain(for an active systein
[1] - T TP TP T

i 00005  0.0010 00015  0.0020

JE ) _(1-iA)(1-J) o o

——=—(1+i0)E-E——————E+E+iV'E,

ot 1+|E]| FIG. 12. The velocity of a moving soliton as a functionafAll

(22 parameters as in Fig. 4.
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of increasing the speed of solitons on a given detuning gra-
dient. Since the soliton cannot respond on a time scale faste
than mingy*,1), when the relaxation rate dfbecomes very
large (in this case infinitg the soliton motion is limited only

by the cavity lifetime. For this reason the value @fat the
bifurcation point is much smaller in Fig. 12 than in Fig. 7
(the solitons are much more sensitive to temperature gradi
ents.

The analysis of Eq921) and(22) supports our assertion
that the motional instability is due essentially to the interac-
tion between the optical and thermal fields. In addition, Egs.
(21) and (22) provide a simpler model with which to exam-
ine the moving solitons than Egd)—(3). Variations on such
reduced, two-equation models are therefore the focus of cur
rent work.

IV. TWO-DIMENSIONAL MOVING CAVITY SOLITONS

We have verified the existence of moving solitons in two
spatial dimensions, as Fig. 13 shows. The existence of ¢
continuum of moving solitons, one for each direction in
space, allows complicated and interesting interactions, sucl
as soliton-soliton scattering. In Fig. 13 two solitons with a

20+
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-20-

—40

4—.
® —u

PHYSICAL REVIEW B6, 036607 (2002

(a)

20|

(b)

20

-20|

-40

-20

20

(c)

20

-20

x O

20

AN

(d)

-40

-20

0

X

20

-20

X

20

small transverse displacement approach each @theand, FIG. 13. Dynamical evolution of two-dimensional colliding
when they are close enough, the diffraction ripples aroundark cavity solitons with arrows indicating directions of motion.
each soliton exert forces which cause them to rotate arounginapshots of the modulus of the electric field@tt=0.15, (b) t
their midpoint(b). As the temperature profile changes in re-=1.0, (c) t=2.0, and(d) t=2.75 thermal relaxation times. Param-
sponse to the orbiting solitons, their orbital speed slows aneters areE;=5.55 anda=1. All other parameters as in Fig. 9.
reverses(c). Finally the force exerted by the temperature

gradient forces the solitons apart once more but in directionfowever, the essential ingredients appear to be the existence
different from those of their initial velocitied). ~ of stationary soliton solutions and the spontaneous creation
A more detailed study of the interactions between movingof “parameter” gradients. We therefore expect moving soli-
solitons will be reported elsewhere. tons to be present in a wide range of optical and other sys-
tems.
V. CONCLUSIONS

We have demonstrated the existence, in both one and two
spatial dimensions, of spontaneously moving cavity solitons
in a model of a semiconductor microcavity. These solitons The authors acknowledge financial support from EPSRC
appear through an instability of the stationary solitons arisingsrants No. GR/M 31880 and No. GR/M 19727, and ESPRIT
from localized temperature changes in the semiconductot.TR Project No. 28235PIANOS) [17]. Finally we would
The existence of this straightforward physical interpretatiorlike to thank fellow partners within the PIANOS collabora-
of the motional instability is a particularly appealing featuretion for access to results prior to publication, especially the
of the model. Regardless of the details of the present systerauthors of Ref[5].
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